
RoboVirtuoso: Attempts at Training a Multi-Task
Piano-Playing Agent

Stanford CS224R Project Final Report Spring 2023

Matt Smith
Department of Computer Science

Stanford University
mjksmith@stanford.edu

Eric Ye
Department of Electrical Engineering

Stanford University
ericye@stanford.edu

Abstract

RoboPianist [1] is a suite of robotic control tasks in which two anthropomorphic
robot hands are tasked with playing a piece on a simulated piano. The tasks are
challenging as they have sparse rewards and a high-dimensional action space. We
aim to train a model-free agent which is able to generalize to new pieces with
little-to-no additional training. To do so, we use the setup from [1] as our baseline
and evaluate several modifications:
Scale Pre-training Inspired by human piano curricula, we create a set 12 environ-
ments corresponding to the types of major scales and use these environments to
pre-train the agent before finetuning on the desired environment. We also explored
pretraining from pieces in the PIG dataset.
Architecture changes The baseline approach uses 3-layer perceptron encoders for
both the agent and the critic. The encoders are given a state representing the current
goal as well as a lookahead for the next 10 time steps, representing 0.5 seconds of
lookahead. To help our encoder better differentiate pieces when pretraining, we
wanted to increase the size of the lookahead and make use of the temporal nature
of the goal. To do so, we replace the MLP encoder with a bidirectional transformer
encoder and increase the lookahead to 100 steps (5 seconds).
Hindsight Experience Replay (HER) In order to deal with the sparse reward,
and to reduce our dependancy on finicky reward shaping, we apply Hindsight
Experience Replay [2].
Key Reward Tiering To counter an observed mode collapse where the robot hands
never touched the piano to avoid a negative reward, we modify the reward function
to give the agent less reward when it doesn’t press any keys.
We evaluated our approaches on the ROBOPIANIST-etudes-12 dataset from Zakka
et al. [1], a collection of 12 randomly-sampled pieces from the PIG dataset [3].
The primary evaluation metric is F1 score.
We found that pretraining on scales improved F1 score by 13.7% vs the randomly-
initialized baseline. However, the model could not learn to perform multiple pieces
at once, and so simultaneous pretraining on pieces from the PIG dataset was not
more effective than random initialization. We also found that replacing the MLP
with a transformer encoder and applying HER were both harmful to learning.
Finally, we found that Key Reward Tiering was able to improve F1 score by 27.8%
compared to the baseline reward scheme, but did not enable multi-piece learning.
We believe that pretraining the agent on multiple pieces is essential for the agent
to exhibit the few-shot learning we desire. In order to help the agent learn to play
multiple pieces, we are interested in investigating techniques that assign IDs or
embeddings to each task, such as DREAM [4].

Stanford CS224R Project Final Report

1 Introduction

RoboPianist is a benchmarking suite for robotic control tasks created by Zakka et al.[1] The RoboPi-
anist suite tasks two simulated anthropomorphic robot hands with performing a piece of music on a
simulated piano. See Figure 1 for a render of this environment. The suite is made up of 150 pieces of
music sourced from the PIG dataset [3], which include fingering annotations. The performance tasks
are challenging due to the high dimensionality of the action space and the sparse rewards. The authors
explore both model-based and model-free approaches, though we focus on model-free approaches
here.

Figure 1: Render of RoboPianist playing some keys from behind the piano.

In their model-free approaches, Zakka et al.[1] train a model independently for each piece in the suite,
and models trained on one piece do not generalize well to other pieces.

2 Motivation

RoboPianist is an interesting challenge to tackle because it requires a high level of precision and
speed from the actuators and agent to perform at a human level. The nature of the task is challenging
since there is a goal at each step in time rather than just at the end of the episode, and the agent
must not only play the correct keys at the current timestep but prepare itself to play correct keys in
the future. Additionally, as we’ll discuss in this report, this task does not respond well to common
reinforcement learning techniques such as PPO and hindsight experience relabelling, possibly due
to the sparse nature of the reward. This makes it an interesting problem to try to solve with novel
reinforcement learning techniques.

3 Related Work

Since RoboPianist is a new benchmark, there have not been many previous attempts to improve
its performance. The model-free baseline in [1] explored several RL techniques to achieve modest
performance on the classical pieces. The model was trained using DroQ, a variant of Soft-Actor-Critic
algorithm. The authors of [1] found that PPO did not achieve reasonable performance even after 10x
as many transitions as Soft-Actor-Critic.

The authors of [1] wrote that some modifications to the formulation of the model-free approach
improved the performance of the system. These modifications were:

1. Fingering reward – Adding annotated fingering information for key key played into the
model.

2. Lookahead horizon – Allowing the model to look ahead n steps of keys in the future, rather
than just the keys at the current timestep.

3. Energy penalty – A reward term that penalizes the model based on how much energy the
hand actuators need.

2

4. Action space reduction – reducing the flexibility of some of the hand actuators and disabling
some degrees of freedom in the hand actuators.

5. Action-reward – Appending the previous action and reward to the transition tuple added to
the replay buffer.

With this approach, [1] achieved an average F1 of 0.538± 0.122 across ROBOPIANIST-etude-12 in
the dataset.

We were inspired by other work in deep learning when working on this project, notably transformers,
and pretraining and fine-tuning.

Transformers [5] were a transformative model architecture that enabled modern large language
models, which are known for their ability to generalize to new unseen tasks. Transformers include
attention layers, which allow the model to perform a learned dictionary-style lookup on the inputs,
unlocking computations that are not possible with simple multilayer perceptrons. BERT, which
we use in this work, is a language model built on transformers. We hypothesized that using a
transformer-based architecture would allow the model to generalize better and learn a task-agnostic
model.

Pretraining and fine-tuning is another concept commonly applied to large language models introduced
in [6], [7] and other works. Large language models are commonly “pre-trained" on a large corpus
of unstructured text, where the language models learns grammar and other information about the
structure of text, but does not perform well on a specific task. Fine-tuning is the practice of taking the
model after pretraining and optimizing the model parameters for a specific task, e.g. by providing
supervised examples. This avoids having to retrain a model from scratch for a variety of tasks, since
what the models learns during pretraining can be applied to many tasks. We believed that the piano
might be similar; that a piano-playing agent must learn similar techniques across different songs.

4 Scale Pretraining

4.1 Hypothesis

Many classical songs in the repertoire are challenging to play. Humans learning to play piano will
first master simpler study pieces and finger exercises such as scales before attempting to learn these
more challenging songs. We hypothesized that pretraining the model-free agent on a set of exercises
would improve the ability of the agent to learn new pieces. To this end, we created a set of 12 major
scale environments, one for each pitch class on the standard piano. The goal of the environments is to
have the left and right hands simultaneously play one octave of the major scale, up then down, in
straight quarter notes at 80 BPM.

4.2 Methods

We pretrained our agents on various environments and then recorded their performance on
ROBOPIANIST-etude-12 [1], a collection of 12 randomly-selected pieces from the PIG piano
pieces with fingering dataset [3]. In all of our experiments, finetuning and pretraining both last 1
million steps using the same algorithm and hyperparameters as in [1] except that we replace the
ReLU activations of the MLP with GELU activations1 [8]. In addition, when seeding the replay
buffer when finetuning, we sample from the model rather than choosing actions randomly. When
pretraining on multiple environments, we give each environment its own replay buffer and then cycle
through the replay buffers when sampling minibatches for training.

Single-scale pretraining We pretrained the agent on the C Major scale with fingering information.

Multi-scale pretraining We pretrained the agent on all 12 major scale environments.

Multi-piece pretraining We pretrained the agent on pieces in the PIG dataset, minus the 12 pieces
in the ROBOPIANIST-etude-12. We also cut out one piece that was overly similar to on of the test
pieces, to avoid contamination.

1We didn’t do this on purpose – the library we got from [1] to replicate the results uses GELUs by default
and we didn’t notice the discrepancy until it was too late.

3

To evaluate our approaches, we compared F1 score obtained by our finetuned agents vs the F1 score
obtained by a randomly initialized agent trained for 1 million steps using the same hyperparameters.
To compute F1 score, we use the set of notes the agent played and the set of goal notes at each
timestep to compute precision and recall, and report F1 as the average per-timestep F1:

F1 =
1

T

T∑
t=1

2 · precisiont · recallt
precisiont + recallt

4.3 Results

The single-scale and multi-scale pretrained models performed better than models without pretraining.
They learned faster and averaged 13.7% higher F1 score after 1M training steps on the 12 etudes in
the test set. See Table 1 for detailed results.

Piece Baseline Single-Scale Pretraining Multi-Scale Pretraining
Bagatelle Op3 No4 0.302 0.380 0.325
French Suite No 1 Allemande 0.496 0.564 0.543
French Suite No 5 Gavotte 0.272 0.404 0.672
French Suite No 5 Sarabande 0.512 0.645 0.769
Golliwoggs Cakewalk 0.442 0.444 0.379
Kreisleriana Op 16 No 8 0.421 0.249 0.390
Paritita No 26 0.530 0.598 0.463
Piano Sonata D845 1St Mov 0.320 0.242 0.357
Piano Sonata K279 In C Major 1St Mov 0.423 0.484 0.609
Piano Sonata No 2 1St Mov 0.578 0.604 0.581
Piano Sonata No 23 2Nd Mov 0.547 0.646 0.537
Waltz Op 64 No 1 0.397 0.374 0.343

Average 0.437± 0.064 0.469± 0.091 0.497 ± 0.091

Table 1: F1 score of pieces in the ROBOPIANIST-etude-12 after 1M steps. Both single-scale
pretraining and multi-scale pretraining show an improvement over the baseline.

In our initial iterations, multi-piece pretraining had significant mode collapse where it would never
touch the piano. In order to address this issue, we investigated applying Hindsight Experience
Relabeling [2], adjusting the environment’s reward function to encourage more interaction with the
piano, and making architectural changes to the actor and the critic.

5 Hindsight Experience Relabelling

5.1 Hypothesis

Inspired by one of the homework assignments and the lectures, we attempted hindsight experience
relabelling (HER) [2] on the agent. We hypothesized that relabelling incorrect trajectories can help
the agent learn potentially novel ways of pressing the correct keys.

5.2 Methodology

During an episode, we record the keys played at each timestep along with the closest finger to each
key. We also record the sequence of actions taken during the episode. We create a new target song
that is conditioned with the goal of playing these recorded keys with the recorded fingers. We play
the recorded actions through an environment with this new target piece, and add all the relabelled
transitions to the replay buffer.

We found that the agent would mistakenly play many keys at once before it is well-trained, and that
this would lead to a different distribution of goals in the relabelled tasks compared to the original
tasks. We were concerned that the goal conditioning was insufficient to elicit the agent to play
differently when the goal was the original goal compared to the relabelled goal so we added an

4

additional value in the observables vector to indicate whether an episode was a relabelled or the
original vector. This way, we are treating the relabelled and original targets as two different tasks
with a forced “embedding" to tell the networks which task it is training on, in addition to the baseline
goal conditioning. This was inspired by the homework on task embeddings for multi-task agents.

We validated our implementation of relabelling by checking that the F1 metrics of the agent in the
relabelled episode was 1.0 (i.e. perfect), which is expected during the relabelled episode.

5.3 Results

We found that using hindsight experience relabelling made the agent significantly worse compared to
training without relabelling. Adding the “relabelled" task embedding ID to the observable vector also
did not help.

Piece Baseline With HER
Bagatelle Op3 No4 0.302 0.068
French Suite No 1 Allemande 0.496 0.057
French Suite No 5 Gavotte 0.272 0.020
French Suite No 5 Sarabande 0.512 0.038
Golliwoggs Cakewalk 0.442 0.258
Kreisleriana Op 16 No 8 0.421 0.012
Paritita No 26 0.530 0.078
Piano Sonata D845 1St Mov 0.320 0.216
Piano Sonata K279 In C Major 1St Mov 0.423 0.059
Piano Sonata No 2 1St Mov 0.578 0.024
Piano Sonata No 23 2Nd Mov 0.547 0.023
Waltz Op 64 No 1 0.397 0.024

Average 0.437 ± 0.064 0.0731± 0.051

Table 2: F1 score of pieces in ROBOPIANIST-etude-12 after 1M steps with and without HER.

5.4 Discussion

We think that hindsight experience relabelling makes the agent worse because the distribution of
notes in the relabelled episodes is different from the distribution of notes in the original pieces, and
introducing these this distinct distribution of notes makes it more challenging for the agent to perform
well at the original song. Even though we try giving the agent an embedding to help it distinguish
between the types of goals, the difference in goals between the original and relabelled episodes might
be too significant to improve performance against the original goals.

6 Tiered Rewards

6.1 Hypothesis

We noticed that in some of the relabelled training sessions, the agent would hover the hands over the
keys but not actually play any of them, leading to poor accuracy. We hypothesized that this was due
to the reward formulation.

The baseline reward formulation consists of five components summed together: the key press reward,
the fingering reward, the sustain reward, the energy reward and the forearm reward. The fingering
reward rewards the agent for having its fingers close to the correct positions on the piano. The sustain
reward rewards the agent for pressing the sustain action correctly. The energy reward rewards the
agent for conserving energy in its joints. The forearm reward rewards the agent for not colliding its
forearms into each other.

The key press reward rewards the agent for pressing keys that should be pressed, and not pressing
keys that should not be pressed.

5

We hypothesized that on challenging pieces, the energy and forearm reward would reward the agent
for not moving (and therefore achieving high energy / forearm reward) and not pressing the keys
more than the key press reward would reward it for pressing the keys correctly, especially early in
training when the agent was not dexterous enough to avoid false positives.

To fix this, we introduce an idea called “reward tiering," where we only give the agent the reward
for energy reduction and forearm collision avoidance if it achieves a high enough reward from the
key press reward. This way we avoid rewarding the agent for not moving at all and hope to get it out
of this local minimum.

We also noticed an odd detail of the key press reward. The key press reward consists of two parts: the
reward for pressing keys that it should press correctly (“true positives", which we’ll call the “recall
reward" since it rewards high recall) and a reward for not pressing any keys that were not supposed to
be pressed (which we’ll call the “precision reward." These rewards are handled separately. The recall
reward ignores keys that were incorrectly played, and the precision reward ignores whether the agent
missed any keys. The recall reward is proportional to the number of keys that were correctly pressed,
with 0.5 reward in a transition representing an agent that plays all the keys it was supposed to (and
again, ignoring whether there were any keys that were played but were not supposed to be played).
The precision reward is either 0 if the agent any keys that were not supposed to be pressed, or 0.5
otherwise.

Mathematically, we can express this as:

rkrecall =
|Kp ∩Kg|

|Kg|

rkprecision =

{
0, if Kp ̸⊆ Kg

1, otherwise

rk = 0.5rkrecall + 0.5rkprecision

where Kp is the set of keys played in a given timestep, Kg is the set of goal keys in a given timestep,
and |s| is the cardinality (number of elements) in the set.

To illustrate this, consider the following examples. Assume that at one step in time, the agent’s goal
is to play two keys, one on each finger.

1. An agent that somehow plays all 88 keys of the piano will get a recall reward of 0.5 and a
precision reward of 0, for a total key press reward of 0.5.

2. An agent that plays none of the keys will get a recall reward of 0 and a precision reward of
0.5, for a total key reward of 0.5.

3. An agent that plays both keys correctly and no other key will get a recall reward of 0.5 and a
precision reward of 0.5, for a total key reward of 1.0.

4. An agent that plays one key correctly and another key incorrectly will get a recall reward of
0.25 and a precision reward of 0, for a total key reward of 0.25.

This meant that in some cases, playing no keys would result in a higher reward than playing some
keys correctly and some keys incorrectly. On challenging songs, the agent might find it much easier
just to take the 0.5 precision reward by not playing any keys rather than exploring how to play some
keys, even if some other keys are played incorrectly.

To try to alleviate this, we devised a change to add a “reward tier" to the key reward as well, so that
the agent would only get a precision reward if it achieved some amount of recall reward in a given
timestep containing goal keys. Specifically, the precision reward is capped to the level of the recall
reward in each timestep that contains goal keys. Mathematically, we can express this as:

r′kprecision = max (rkrecall, rkprecision)

r′k = 0.5rkrecall + 0.5r′kprecision

In this report we call this specific modification “Key Reward Tiering."

6

6.2 Results

We found that Key Reward Tiering led to an improvement over baseline but reward tiering did not.
We also found that Key Reward Tiering improved performance on hindsight relabelling significantly,
although not above a no-relabelling baseline. The Key Reward Tiering seems to “unlock" better
performance with hindsight relabelling, which hints that the reward might have been too tightly
coupled to the baseline model. See full results in Table 3 and note how Key Reward Tiering improved
relabelling performance significantly (over sixfold), but was still worse than baseline.

Relabelling Reward tiering Baseline Key Reward Tiering
No No 0.4958 0.6482
Yes No 0.05705 0.3508
No Yes 0.4777 Did not run†

Yes Yes ≈ 0∗ 0.2983
Table 3: F1 score after 1M steps. Results related to hindsight experience relabelling and reward
tiering. All results are based on French Suite No. 1 Allemande from ROBOPIANIST-etudes-12.
*Training stopped early after 660k steps without achieving a nonzero F1, which is significantly worse
than any other models. † Did not run due to time constraints.

7 Architectural Changes

7.1 Hypothesis

The RoboPianist environemnts are quantized into 0.05s timesteps. The observation state includes
a goal lookahead of 10 timesteps (representing 0.5s), which consists of a 10x89 binary matrix
representing which keys should be active at each future timestep (88 bits at each timestep for keys
+ 1 bit for the sustain pedal which is unused). We hypothesized that one of the reasons multi-piece
pretraining failed was because this amount of lookahead was not sufficient for the agent to differentiate
between pieces, and so we could improve our multi-piece pretraining by increasing the length of the
goal lookahead.

7.2 Methods

In order to scale up the lookahead buffer size without scaling the size of the model, and to make
use of the temporal nature of the goal, we replaced the MLPs in the actor and critic networks with
3-layer BERT-style transformer encoders [9]. We used a hidden dimension of 128 and 2 attention
heads. The environment state, current goal and goal lookahead are projected into the transformer’s
input dimension and arranged into a sequence to be fed into the transformer as shown in Figure 2.
We use the output of the transformer at the first sequence position as the embedding of the agent’s
observation.

Because most lookahead timesteps are identical, we convolve the transformer inputs in the time
dimension with kernel size = stride = 10 before computing the positional embeddings to reduce the
input sequence to 10 vectors each representing 0.5s of lookahead and one vector representing the
environment state.

We also introduced a lookahead for the fingering goal, which is a 10-dimensional binary vector
representing which of the agent’s 10 simulated fingers should be down at a given timestep, and
include this as input to the transformer by summing the embeddings of the goal lookahead and
fingering lookahead immediately before the transformer layers.

To try to disentangle the effects of the longer lookahead and the architecture changes, we increased
the lookahead length for the MLP by adding in the 1D convolutions from the transformer architecture,
and reported those results as MLP+Conv.

To evaluate the transformer architecture, we trained an agent on French Suite No. 1 Allemande from
ROBOPIANIST-etudes-12. To test our hypothesis and see if transformer architectures were able to
learn multiple pieces at once, we perform multi-piece pretraining as described in section 4.2.

7

Environment

Other state

Position of the
hands, forces on
the actuators, etc.

MIDI Lookahead

Binary representation
of which keys should
be pressed for the
next 5s, sliced into
100 0.05s chunks

Fingering Lookahead

Indicates which fingers
should be down as a
10-dim binary vector for
each lookahead timestep

Conv1D Conv1D Dense

M
ID

I
t=

0
Fi

ng
er

in
g

t=
0

O
th

er
 S

ta
te

 E
m

b.

M
ID

I
t=

1
Fi

ng
er

in
g

t=
1

M
ID

I
t=

2
Fi

ng
er

in
g

t=
2

M
ID

I
t=

10
Fi

ng
er

in
g

t=
10

BERT

Output

M
ID

I
t=

3
Fi

ng
er

in
g

t=
3

M
ID

I
t=

4
Fi

ng
er

in
g

t=
4

Positional
Encodings

Figure 2: The transformer-based architecture for the actor & critic encoders. The first element in the
sequence of transformer inputs is an embedding of the environment state (the positions of the hands,
the forces on the actuators, etc.), followed by an embedding of the current goal (t = 0), followed by
10 embeddings each representing 0.5s of goal lookahead (t > 0).

8

7.3 Results

Architecture Lookahead Timesteps Key Reward Tiering # Actor Params F1@100k Steps F1@1M Steps

MLP 10 No 477k 0.017 0.496
MLP 10 Yes 477k 0.132 0.648
Transformer 10 Yes 834k 0.104 0.290
MLP+Conv 10 Yes 329k 0.187 0.371

Transformer 100 No 834k 0.124 0.155
MLP+Conv 100 No 557k 0.085 0.120
MLP 100 Yes 2.76M 0.180 0.289
Transformer 100 Yes 834k 0.220 0.372
MLP+Conv 100 Yes 557k 0.200 0.305

Table 4: Results when evaluated on French Suite No. 1 Allemande with 10 and 100 steps of lookahead.
Among the runs with 10 lookahead timesteps Transformer and MLP+Conv architectures perform
better after just 100k training steps, however they stop learning more quickly than and are eventually
beaten out by the MLP architecture. The Transformer is the only architecture that benefits from
increased lookahead timesteps, and it beats out the MLP architecture when both are given 100 steps
of lookahead. However, the MLP with 10 steps of lookahead remains our best model architecture
when given the full 1M training steps.

Transformer and MLP+Conv outperform the baseline architecture after 100k steps, but are not as
strong when trained for the full 1 million steps. We found that Key Reward Tiering is necessary for
transformer and MLP+Conv encoders to achieve a good F1 score. Without Key Reward Tiering, the
transformer network focuses too much on optimizing for the hand positioning and energy penalties
and does not interact with the piano enough for learning to progress quickly.

For the multi-piece pretraining, each transformer run takes about 8 hours, so fine-tuning the trans-
former on each etude ended up not being possible. However we did fine-tune French Suite No 1.
Allemande using the pretrained MLP and Transformers and got about the same result as a randomly-
initialized model. In addition, we evaluated the MLP- and Transformer-based models in a 0-shot
setting, and found that the Transformer model was able to achieve some F1 score on each of the
etudes, though the 0-shot performance is still quite poor. The results of the 0-shot evaluations are
shown in Table 5. For the two pieces where MLP performed better, Golliwoggs Cakewalk and Piano
Sonata D845 1St Mov, we find that the F1 score the pretrained MLP network achieved was unchanged
from its random initialization. If we remove those two pieces, the transformer network performs
significantly better in the 0-shot regime. This supports our hypothesis that using a longer context
length and making use of the sequential nature of the data may be important for an agent to exhibit
multi-piece learning.

9

Piece MLP Transformer
lookahead=10 lookahead=100

Bagatelle Op3 No4 0.070 0.091
French Suite No 1 Allemande 0.000 0.132
French Suite No 5 Gavotte 0.000 0.082
French Suite No 5 Sarabande 0.000 0.109
Golliwoggs Cakewalk 0.258 0.045
Kreisleriana Op 16 No 8 0.001 0.044
Paritita No 26 0.000 0.120
Piano Sonata D845 1St Mov 0.209 0.001
Piano Sonata K279 In C Major 1St Mov 0.050 0.074
Piano Sonata No 2 1St Mov 0.003 0.023
Piano Sonata No 23 2Nd Mov 0.000 0.084
Waltz Op 64 No 1 0.000 0.087
Average 0.049 ± 0.057 0.075 ± 0.024
Average minus Gollwogs
Cakewalk & Sonata D845 0.012 ± 0.018 0.085 ± 0.023

Table 5: 0-shot F1 scores of pieces in ROBOPIANIST-etude-12 after 1M steps of multi-piece
pretraining.

8 Conclusions and Future Work

We found that pretraining our agent on major scale environments gave an improvement over our
baseline measurements. However our agents pretrained on the PIG dataset never learned to generalize
properly. We made multiple efforts to enable pretraining on the PIG dataset, including applying
Hindsight Experience Relabelling (HER), modifying the environment’s reward function, and replacing
the MLP in the actor and critic with a transformer-encoder-based network. We found that Key Reward
Tiering yielded meaningful improvements to the agent’s learning by encouraging it to interact with the
piano. While our the baseline pretrained model achieved a F1 score of 0.0 on half of the environments
in ROBOPIANIST-etudes-12, combining Key Reward Tiering with the transformer architecture using
a longer lookahead length yielded a small 0-shot capability. However this only addresses a tiny
fraction of the gap between the agent’s 0-shot performance and the fine-tuned performamce.

Improving performance on this task was much more challenging than anticipated. Our initial
ambitions of implementing MT-OPT [10], a modern multi-task training system, were quickly dashed
when we found that hindsight relabelling, the transformer architecture and multi-scale pretraining
did not work nearly as well as expected. We then spent a significant amount of time trying to tune
the system before attempting Key Reward Tiering, which did seem to “unlock" some of the other
approaches. We ran out of time to explore this further, but we believe that continuing to tune the
rewards could unlock other RL methods such as the ones we’ve seen in class. Overall, this is a very
challenging task since getting the action right at each timestep is crucial (and not just at the end of
the episode like for many other tasks).

9 Team Member Contributions

Eric implemented the initial setup of the robopianist environment & baseline training code. Eric also
implemented HER and the tiered rewards.

Matt implemented the pretraining approaches and the transformer architecture.

We would like to thank Kevin Zakka for helping us reproduce the results from [1].

10

References
[1] Kevin Zakka, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng, Sumeet Singh,

Yuval Tassa, Pete Florence, Andy Zeng, and Pieter Abbeel. Robopianist: A benchmark for
high-dimensional robot control, 2023.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay,
2018.

[3] Eita Nakamura, Yasuyuki Saito, and Kazuyoshi Yoshii. Statistical learning and estimation of
piano fingering. CoRR, abs/1904.10237, 2019.

[4] Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration
and exploitation for meta-reinforcement learning without sacrifices, 2021.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[6] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

[7] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classification. CoRR,
abs/1801.06146, 2018.

[8] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

[10] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale, 2021.

11

	Introduction
	Motivation
	Related Work
	Scale Pretraining
	Hypothesis
	Methods
	Results

	Hindsight Experience Relabelling
	Hypothesis
	Methodology
	Results
	Discussion

	Tiered Rewards
	Hypothesis
	Results

	Architectural Changes
	Hypothesis
	Methods
	Results

	Conclusions and Future Work
	Team Member Contributions

