
RoboPianist
Improvements to learning a robotic dexterity challenge.

Matt Smith 1 Eric Ye 2

1Computer Science, Stanford 2Electrical Engineering, Stanford

Introduction

RoboPianist is a robotic dexterity benchmark implemented in Mujoco
by Zakka et al[2]. The environment (pictured below) tasks two robotic
hands with performing a piece of music on a piano. The environment
is challenging due to the high dimensionality of the action space and
the sparse rewards. The reference implementation is trained using
soft actor‐critic (SAC) using a 3‐layer MLP encoder for the actor and
the critic, and trained an actor and critic from scratch for each piece it
performed. Our goal was to train an agent that was able to generalize
well to new pieces with little‐to‐no finetuning.

Methods & Experiments

Pretraining

The original RoboPianist Suite came with two major scale environ‐
ments for debugging, C Major and D Major. We augment this with
the remainder of the chromatic scale with full fingering information,
and train the agent to play these scales prior to training on the tar‐
get piece. We also explore pretraining on 138 pieces from the PIG
dataset [1], a dataset of Midi files with annotated fingering informa‐
tion, and evaluted on the robopianist‐etudes‐12 dataset from Kazza
et al.

Hindsight relabelling

Hindsight relabelling is a reinforcement learning technique that helps
especially in scenarios with sparse rewards such as this. We im‐
plement this by rolling out a trajectory based on the current agent,
recording which keys were actually played during the episode, find‐
ing the closest finger to each played key and creating a new task for
the same agent based on those recorded keys.

Transformer‐Based Agent
We replaced the multilayer perceptron from the original model‐free
agent with a transformer‐based agent based on BERT. To do this,
we unravel the horizon of goal states into a sequence and we
append the current state to each time step in the sequence. We
also increase the midi lookahead from 0.5s (10 steps) to 5s (100
steps) and add fingering information to the lookahead.

Environment

Other state

Position of the 
hands, forces on 
the actuators, etc.

MIDI Lookahead

Binary representation 
of which keys should 
be pressed for the 
next 5s, sliced into 
100 0.05s chunks

Fingering Lookahead

Indicates which fingers 
should be down as a 
10-dim binary vector for 
each lookahead timestep

Conv1D Conv1D Dense

Most lookahead 
timesteps are identical, 
so we convolve in the 
time dimension with 
kernel size = stride = 10 
to get 10 vectors each 
representing 0.5s

M
ID

I 
t=

0
Fi

ng
er

in
g

t=
0

O
th

er
 S

ta
te

 E
m

b.

M
ID

I 
t=

1
Fi

ng
er

in
g

t=
1

M
ID

I 
t=

2
Fi

ng
er

in
g

t=
2

M
ID

I 
t=

10
Fi

ng
er

in
g

t=
10

BERT

Output

M
ID

I 
t=

3
Fi

ng
er

in
g

t=
3

M
ID

I 
t=

4
Fi

ng
er

in
g

t=
4

Results

Pretraining We found that while scales pretraining improved for
some songs, such as French Suite No. 1 Allemande, it did not im‐
prove the performance of the agent in general for the etude songs.
We also found that pretraining on other songs in the dataset did not
help. We saw that the pretraining on other songs was not converging
so we stopped it before letting it run to completion to get results.

Approach F1 Score after 1M steps
Zakka et al. (no pretraining) 0.538 ± 0.122

Scale pretraining 0.524 ± 0.092

Transformers
We trained our transformer model on French Suite No 1 Allemande.
We also ported the increased lookahead length, 1D convolutions
and fingering lookahead to the MLP model, which we report as
MLP+Conv.

100k Steps 1M Steps
F1 Time Elapsed F1 Time Elapsed

MLP 0.050 20 min 0.543 3.8h
Transformer 0.154 39 min 0.173 6.5h
MLP+Conv 0.156 20 min 0.122 3.9h

The transformer and MLP+Conv encoders increase training velocity initially, but
stop making progress much earlier than the original MLP algorithm.

Hindsight relabelling Hindsight relabelling did not improve learning
rate or learning over a non‐relabelling baseline and actually
performed worse. We think this is because the nature of relabelled
tasks is significantly different from the nature of the songs the agent
is trying to learn. The relabelled task might have no notes, or have a
single finger pressing multiple keys at once which is challenging for
the agent to reproduce.

F1 without hindsight (purple) compared to F1 with hindsight relabelling with
various reward weightings. Some training runs were prematurely cancelled to
save time.

Conclusion

While we found that Pretraining on individual scales can help learn‐
ing, pretraining on multiple scales or pieces did not help the agent
generalize to new pieces better. Architecture changes (Transformer
andMLP+Conv) yielded initial improvements to F1 score but stopped
learning much earlier than the MLP model. We hope to continue
working on hindsight relabelling until the final project report and
make a positive improvement with one of the approaches.

We would like to thank Kevin Zakka for his help with the RoboPianist code.
[1] Eita Nakamura, Yasuyuki Saito, and Kazuyoshi Yoshii. Statistical learning and estimation of piano fingering. CoRR,

abs/1904.10237, 2019.
[2] Kevin Zakka, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng, Sumeet Singh, Yuval Tassa, Pete Florence,

Andy Zeng, and Pieter Abbeel. Robopianist: A benchmark for high‐dimensional robot control, 2023.

CS224R Spring 2023 matt@mjksmith.com, ericye16@gmail.com

mailto:matt@mjksmith.com
mailto:ericye16@gmail.com

	References

